Prolonged Expression of a Putative Invertase Inhibitor in Micropylar Endosperm Suppressed Embryo Growth in Arabidopsis

نویسندگان

  • Bongeka Zuma
  • Mason B. Dana
  • Dongfang Wang
چکیده

Proper seed development requires coordinated growth among the three genetically distinct components, the embryo, the endosperm, and the seed coat. In Arabidopsis, embryo growth rate accelerates after endosperm cellularization, which requires a chromatin-remodeling complex, the FIS2-Polycomb Repressive Complex 2 (PRC2). After cellularization, the endosperm ceases to grow and is eventually absorbed by the embryo. This sequential growth pattern displayed by the endosperm and the embryo suggests a possibility that the supply of sugar might be shifted from the endosperm to the embryo upon endosperm cellularization. Since invertases and invertase inhibitors play an important role in sugar partition, we investigated their expression pattern during early stages of seed development in Arabidopsis. Two putative invertase inhibitors (InvINH1 and InvINH2) were identified as being preferentially expressed in the micropylar endosperm that surrounds the embryo. After endosperm cellularization, InvINH1 and InvINH2 were down-regulated in a FIS2-dependent manner. We hypothesized that FIS2-PRC2 complex either directly or indirectly represses InvINH1 and InvINH2 to increase invertase activity around the embryo, making more hexose available to support the accelerated embryo growth after endosperm cellularization. In support of our hypothesis, embryo growth was delayed in transgenic lines that ectopically expressed InvINH1 in the cellularized endosperm. Our data suggested a novel mechanism for the FIS2-PRC2 complex to control embryo growth rate via the regulation of invertase activity in the endosperm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development.

Invertase activity is thought to play a regulatory role during early kernel development by converting sucrose originating from source leaves into hexoses to support cell division in the endosperm and embryo. Invertases are regulated at the posttranslational level by small protein inhibitors, INVINHs. We found that in maize (Zea mays), an invertase inhibitor homolog (ZM-INVINH1) is expressed ear...

متن کامل

Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm.

Regulation of seed germination requires coordinate action by the embryo and surrounding endosperm. We used Arabidopsis thaliana to establish the relative roles of embryo and endosperm in the control of seed germination and seedling establishment. We previously showed that endospermic oil reserves are used postgerminatively via gluconeogenesis to fuel seedling establishment and that lipid breakd...

متن کامل

Arabidopsis ABA INSENSITIVE4 Regulates Lipid Mobilization in the Embryo and Reveals Repression of Seed Germination by the Endosperm W

Regulation of seed germination requires coordinate action by the embryo and surrounding endosperm. We used Arabidopsis thaliana to establish the relative roles of embryo and endosperm in the control of seed germination and seedling establishment. We previously showed that endospermic oil reserves are used postgerminatively via gluconeogenesis to fuel seedling establishment and that lipid breakd...

متن کامل

Molecular analysis of endo-β-mannanase genes upon seed imbibition suggest a cross-talk between radicle and micropylar endosperm during germination of Arabidopsis thaliana.

The endo-β-mannanase (MAN) family is represented in the Arabidopsis genome by eight members, all with canonical signal peptides and only half of them being expressed in germinating seeds. The transcripts of these genes were localized in the radicle and micropylar endosperm (ME) before radicle protrusion and this expression disappears as soon as the endosperm is broken by the emerging radicle ti...

متن کامل

Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana.

The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018